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ABSTRACT 

High-performance risk analytics (HPRA) sits at the intersection of large-scale data engineering and computationally 

intensive quantitative finance. Banks and financial institutions must compute measures such as Value-at-Risk, 

Expected Shortfall, counterparty exposure profiles, XVA, stress-test impacts, and regulatory capital under strict time 

windows. While compute acceleration (distributed clusters, GPUs, optimized numerical schemes) has progressed 

quickly, the hardest bottlenecks increasingly come from data: fragmented sources, inconsistent identifiers, weak 

lineage, late-arriving market data, incomplete reference data, and governance constraints that limit what can be used 

and when. This paper synthesizes the dominant data challenges that prevent near real-time risk, explains why these 

challenges are amplified by high-performance architectures, and compares competing platform patterns (warehouse, 

lake, lake house, and hybrid) from a risk-data standpoint. We also propose a practical control-and-architecture 

blueprint: “risk data products” with strong lineage and validation, plus tiered storage/compute that separates 

regulatory-grade reporting from exploratory analytics. The discussion is grounded in recent research on scalable big-

data risk architectures [1], BCBS-239-oriented validation and lineage practices [2–4], and high-performance XVA 

computation methods that stress both compute and data pipelines [5–8]. 

1. Introduction 

Risk analytics has shifted from periodic reporting (daily or end-of-day) toward continuous decision support. Modern 

portfolios span multiple asset classes, legal entities, and booking models; the analytics stack must join trade data, 

reference/master data, market data, collateral and margin data, counterparty data, and historical observations at scale. 

The computational side is heavy, but what frequently breaks the system is the data plane: data arrives late, identifiers 

do not match, market conventions differ, and “truth” differs by system. 

This is not merely an operational annoyance. Many risk calculations are path dependent (e.g., Monte Carlo exposure, 

XVA layers, stress scenarios), so small data defects propagate nonlinearly and create large valuation or exposure 

errors. High-performance architectures amplify these issues: parallel execution spreads bad inputs quickly, caching 

can freeze incorrect data into downstream results, and distributed transformations make lineage harder unless 

explicitly engineered. 

Recent literature highlights that scalable risk computation increasingly depends on data modelling standards, 

harmonized contract representations, and well-designed big-data pipelines [1]. At the same time, compliance-driven 

governance, master data management, and data lineage remain difficult to implement in large banks [3,4]. For 

complex counterparty-risk measures such as XVA, GPU-enabled nested Monte Carlo approaches demonstrate that 
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compute may be feasible, but they implicitly assume disciplined input data, scenario management, and consistent 

market/contract conventions [5]. 

Table 1. HPRA analytics types and their data stressors 

Analytics family Core computations Primary data dependencies Typical data pain point 

Market risk 

(VaR/ES) 
scenarios, revaluations positions, market data, curves late prices, inconsistent curves 

Counterparty risk exposure profiles, netting 
trades, CSAs, collateral, legal 

entity 

wrong netting sets, missing CSA 

terms 

XVA 
nested simulation / 

regressions 

exposure, funding curves, credit 

spreads 

inconsistent curves, wrong 

calendars 

Liquidity/stress 

tests 
shocks + aggregation 

cashflows, funding sources, 

limits 
mapping and hierarchy mismatch 

Regulatory metrics 
standardized formulas + 

audit 
lineage, controls, reference data Explainability/audit gaps 

 

2. Background and related work 

2.1 Big-data architectures for financial risk 

Big-data frameworks have been adopted to handle the “risk data explosion” created by scenario simulation and 

granular contract modelling. Stockinger et al. show a scalable architecture for large-scale financial analytics using 

Apache Spark and discuss an important implementation trade-off: user-defined functions (UDFs) that reuse existing 

computation kernels versus rewriting parts into SQL to leverage optimizers [1]. This matters for risk analytics because 

many calculations are nonlinear and kernel-based; the “data plumbing” around kernels becomes the dominant scaling 

constraint. 

2.2 Data governance and BCBS-239-oriented practices 

Banks face persistent challenges in risk data aggregation, validation, and reporting. Prorokowski focuses on risk data 

validation under BCBS-239, emphasizing lineage proof and auditability across the data lifecycle [2]. Martins et al. 

propose a BCBS-239 compliance action plan tied to master data management and governance processes, reflecting 

how governance is not optional: it is structural work that must be built into systems [3]. Bernardo et al. provide a 

systematic review of data governance and quality management, highlighting maturity models and recurring 

organizational/technical challenges [4]. 

2.3 High-performance counterparty risk and XVA computation 

For XVA, nested Monte Carlo remains a canonical approach, but it is computationally expensive. Abbas-Turki et al. 

describe GPU optimizations that make error-controlled nested Monte Carlo XVA more feasible [5]. Chau et al. build 

a scalable XVA demonstrator using a stochastic grid bundling method with GPU computing [6]. Albanese et al. 

connect XVA to a balance-sheet perspective and discuss computation in a whole-bank context [7]. Grzelak proposes 

sparse-grid techniques to dramatically reduce portfolio evaluations for exposure calculations, addressing a key 
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bottleneck in xVA pipelines [8]. All of these methods share a hidden assumption: data (trades, curves, calendars, 

credit inputs, legal terms) must be clean and consistently mapped, or the speedup only accelerates incorrect results. 

Table 2. What the literature implies about data challenges 

Source Focus Key implication for data 

Stockinger et al. (2019) [1] 
scalable Spark risk 

analytics 
data models + execution plan choices affect feasibility 

Prorokowski (2019) [2] BCBS-239 validation lineage and validation must be designed, not “bolted on” 

Martins et al. (2022) [3] BCBS-239 + MDM 
master/reference data is a compliance and accuracy 

foundation 

Bernardo et al. (2024) [4] governance review governance maturity is a differentiator for reliability 

XVA / exposure papers [5–

8] 
HPC for risk compute gains are wasted if inputs are inconsistent 

 

3. Data challenges across the HPRA lifecycle 

This section organizes challenges by where they occur: ingestion, normalization, enrichment, scenario management, 

aggregation, and reporting. 

3.1 Heterogeneity and semantic mismatches 

Risk engines merge data from front office systems, middle office controls, market data vendors, collateral systems, 

and reference data hubs. The same concept may be represented differently: multiple instrument identifiers, different 

day-count conventions, different curve construction rules, and inconsistent legal entity hierarchies. In practice, 

semantic mismatches show up as: duplicated trades, broken netting sets, or incorrect aggregation by desk or legal 

entity. 

A common pattern is “schema harmonization without semantic harmonization.” Teams unify column names and 

formats but still disagree on meaning. This is why master data management and governance frameworks remain 

central [3,4]. 

3.2 Data quality: completeness, accuracy, consistency, timeliness 

Data quality is multidimensional. In risk, the cost of poor quality is asymmetric: one wrong CSA threshold can shift 

exposure; one missing reference rate fix can break curve construction. Empirical research on how data quality affects 

machine learning shows performance degradation across multiple quality dimensions [9], which is relevant because 

ML is increasingly used for approximations (pricing surrogates, scenario compression, anomaly detection) inside risk 

pipelines. 

3.3 Lineage and auditability gaps 

High-performance pipelines frequently prioritize throughput over traceability. Yet risk requires explainability: “where 

did this number come from?” Prorokowski emphasizes that proving complete lineage is challenging and requires more 
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than point validations; it needs traceable metadata, audit trails, and controlled transformations [2]. Without this, 

institutions face model risk, operational risk, and regulatory findings. 

3.4 Reference data and entity resolution 

Many exposure and capital calculations depend on correct entity resolution: counterparty hierarchies, legal entity 

identifiers, product taxonomies, and curve mapping keys. Martins et al. show that master data management and 

governance are essential to BCBS-239 compliance and effective risk reporting [3]. In HPRA, entity resolution must 

also be fast and scalable, not just correct. 

3.5 Scenario and history management (especially under FRTB-style demands) 

Some regimes require long histories of “real” price observations and consistent tracking of modellability logic. 

Huang’s study on FRTB data pooling highlights the technological requirements and costs of retaining, validating, and 

using large observational datasets to support modellability outcomes [10]. These datasets are large, sensitive, and 

often governed by strict internal controls, making them difficult to operationalize in low-latency pipelines. 

Table 3. Data challenges mapped to root causes and failure signals 

Challenge Root cause Observable failure signal Typical downstream impact 

Semantic mismatch 
inconsistent conventions and 

mappings 

reconciliation breaks across 

reports 
wrong limits/capital attribution 

Missing/late data batch feeds, vendor delays “holes” in curves/scenarios reruns, SLA breaches 

Poor lineage opaque ETL, manual fixes cannot explain number audit findings, model risk 

Entity resolution weak MDM, duplicate IDs netting errors exposure inflation/deflation 

History/scenario 

sprawl 

retention + governance 

limits 

storage blow-up, access 

delays 

compute cost spikes, missing 

RFET evidence 

4. Why high-performance architectures make the data problem harder 

High-performance risk stacks introduce specific “data physics.” The same defect is more damaging because it scales 

faster. 

4.1 Parallelism amplifies bad inputs 

Distributed computing frameworks (Spark, Flink, GPU kernels) replicate inputs across executors. A mapping error 

can instantly contaminate thousands of partitions and cached intermediate datasets. This creates two requirements: 

1. pre-flight validation before parallel compute, and 

2. guardrails during execution (schema checks, invariants, anomaly thresholds). 

4.2 Data locality, caching, and correctness 

Caching is essential for speed but dangerous for correctness if cache invalidation is weak. For example, caching yield 

curves can reduce latency, but if curve construction changes intraday, cached curves produce inconsistent valuations 
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across runs. Stockinger et al. demonstrate that design decisions (UDF vs SQL rewrite) affect end-to-end runtime and 

scalability [1]; similar decisions affect where caching happens and how reproducible results remain. 

4.3 Mixed workloads: regulatory-grade vs exploratory analytics 

Risk platforms usually support two workloads: 

 Regulatory-grade: strict controls, reproducible runs, auditable lineage. 

 Exploratory/desk analytics: fast iteration, flexible inputs, “what-if” analysis. 

Trying to serve both with the same data pipeline often leads to compromises that break one side. Governance literature 

suggests maturity models and differentiated controls to avoid this trap [4]. 

4.4 Data volume explosion from simulation 

Monte Carlo and scenario-based risk multiplies data volumes. Even when storing only aggregated results, 

intermediate states can be enormous. In large-scale financial analytics, intermediate results can reach extreme sizes, 

motivating careful architecture choices [1]. 

Table 4. HP architecture choices vs data risks 

Architecture choice 
Performance 

upside 
Data risk introduced Mitigation pattern 

Aggressive caching low latency stale/incorrect snapshots versioned datasets, TTL + invalidation 

Distributed ETL scale opaque transformations metadata-first lineage + run IDs 

GPU acceleration huge speedups “fast wrong answers” strict input contracts + validation gates 

UDF-heavy pipelines reuse kernels 
harder optimization + 

tracing 
standardized interfaces + structured logs 

Mixed workload on one 

lake 
lower duplication control conflicts 

split “gold” regulatory data products vs 

sandbox 

 

5. Comparative analysis of platform patterns 

This section compares common platform approaches specifically through a risk-data lens (not generic “data platform” 

criteria). 

5.1 Data warehouse-centric 

Warehouses offer strong governance, SQL semantics, and consistency, which helps lineage and audit. But they 

struggle with semi-structured data, high-frequency market feeds, and simulation-scale intermediates. 
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5.2 Data lake-centric 

Lakes handle scale and flexible formats well. But without strong governance, lakes become “data swamps,” and 

lineage plus quality become fragile. This is especially problematic for BCBS-239-aligned risk reporting. 

5.3 Lakehouse or hybrid 

A lake house-like approach aims to combine lake scalability with warehouse-like governance. In practice, many risk 

organizations adopt a hybrid: a governed “gold” layer for audited metrics and a scalable lake/compute layer for 

scenario generation and heavy simulations. Governance research supports staged maturity and differentiated practices 

[4]. 

5.4 Data pooling / consortium models (for observational history) 

For model lability-driven regimes, data pooling can expand usable observations but introduces confidentiality, 

standardization, and operational overhead. Huang discusses the trade-offs and implementation constraints in the 

FRTB context [10]. 

Table 5. Comparative analysis of risk-data platform patterns 

Pattern Strengths for risk Weaknesses for risk Best-fit use cases 

Warehouse-centric 
strong controls, 

repeatability 

expensive at simulation 

scale 

regulatory reporting, reconciled 

aggregates 

Lake-centric 
scalable storage, flexible 

schema 

governance/lineage 

harder 
raw ingestion, exploratory analytics 

Hybrid / lakehouse-

like 
balance of scale + control 

complexity, tooling 

sprawl 

end-to-end risk with “gold” data 

products 

Specialized pools 

(FRTB) 
richer history/coverage legal/security constraints 

modellability evidence, price 

observation retention 

 

6. Control framework and design recommendations 

Here is a practical blueprint for mitigating data challenges without killing performance. 

6.1 Treat risk datasets as “data products” 

Each core dataset (trades, market curves, counterparty hierarchies, collateral terms, scenarios) should be a versioned, 

documented product with: 

 explicit SLAs (freshness, completeness), 

 validation rules (invariants), 

 contract tests (schema + semantics), 

 lineage metadata and run IDs. 

This aligns with BCBS-239-style thinking as operationalized through MDM and governance practices [2,3]. 
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6.2-Tiered data quality gates 

Use three tiers: 

1. Bronze (raw): capture everything; minimal rejection; immutable ingestion. 

2. Silver (validated/standardized): enforce schema + key constraints; resolve IDs. 

3. Gold (regulatory-grade): reconciled, signed-off mappings; audited lineage. 

6.3 Lineage-by-construction 

Instead of retrofitting lineage, embed it: 

 propagate dataset version IDs into every transformation, 

 record transformation DAGs (job IDs, inputs, outputs), 

 store model/risk-run configuration as a first-class artifact. 

This addresses the “prove lineage” pain point highlighted in BCBS-239 validation discussions [2]. 

6.4 Performance-aware validation 

Validation must be efficient: 

 run lightweight checks before scaling out (sample + critical constraints), 

 run distributed checks as part of ETL (partition-level assertions), 

 quarantine suspicious partitions rather than failing entire runs. 

6.5 Compute/data co-design for XVA and exposure engines 

High-performance XVA methods (GPU nested Monte Carlo, sparse grids, bundling methods) reduce compute but 

require consistent inputs and scenario governance [5–8]. The co-design principle is: standardize the interface 

between data products and pricing/risk kernels (curves, calendars, vol surfaces, CSA terms) and enforce it with 

automated contract tests. 

Table 6. Recommended controls and their performance impact 

Control What it prevents Implementation idea Performance cost 

Versioned datasets “same run, different inputs” immutable snapshots + IDs low to medium 

Semantic validation wrong conventions/mappings rule engine + critical invariants medium 

Lineage capture audit failure metadata DAG + run configs low 

Entity resolution netting/aggregation errors MDM rules + deterministic matching medium 

Quarantine strategy full-run failures isolate bad partitions low 
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7. Discussion and future directions 

7.1 Data-centric risk and “trustworthy analytics” 

As ML becomes more common in risk workflows, data quality becomes even more central. Empirical evidence shows 

measurable performance sensitivity to data quality dimensions [9]. For risk, this implies: ML-based approximations 

must have data-quality monitoring and drift detection tied to the same lineage and versioning system used for classic 

analytics. 

7.2 Metadata frameworks and hybrid simulation–AI workflows 

Modern workflows increasingly combine simulation with AI surrogates and require stronger metadata to coordinate 

artifacts (datasets, model versions, calibration inputs). Recent work on metadata frameworks for tracking metadata, 

lineage, and model information in hybrid workflows reflects this trend [11]. 

7.3 Regulation-driven datasets and privacy 

FRTB-like observational requirements push toward larger retained datasets and potentially shared pools [10]. That 

creates tension with privacy, confidentiality, and competition constraints. Technically, this encourages: 

 anonymization pipelines with verifiable transformations, 

 access control at dataset and column level, 

 cryptographic audit trails (where appropriate), while still preserving performance. 

Table 7. Emerging themes 

Theme Why it’s coming Data implication 

ML surrogates in risk faster revaluation needs data-quality monitoring + drift 

Hybrid sim–AI workflows compute savings richer metadata + artifact tracking 

Larger retained histories modellability + explainability storage + governance complexity 

Stronger lineage tooling audit pressure lineage-by-default becomes mandatory 

 

8. Conclusion 

High-performance risk analytics is increasingly limited by data rather than raw compute. The core challenges are 

semantic mismatches, multi-dimensional data quality, lineage gaps, entity resolution, and scenario/history 

management at scale. High-performance architectures magnify these risks because parallelism spreads defects 

quickly, caching can freeze incorrect states, and mixed workloads create governance conflicts. 

The path forward is not “more tools,” but data discipline engineered into the platform: versioned risk data products, 

tiered quality gates, lineage-by-construction, performance-aware validation, and compute/data co-design for exposure 

and XVA engines. Comparative analysis suggests hybrid patterns (governed “gold” plus scalable simulation layers) 

are often the most realistic route for institutions that must satisfy both regulatory and real-time decision demands. 
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Table 8. Final checklist for HPRA readiness 

Area Minimum bar “Good” looks like 

Data quality basic schema checks semantic rules + monitoring 

Lineage partial logs end-to-end, queryable DAG 

MDM/entity manual fixes deterministic resolution + stewardship 

Platform scalable compute scalable + controlled “gold” layer 

XVA/exposure fast compute fast + reproducible + auditable 
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