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ABSTRACT

High-performance risk analytics (HPRA) sits at the intersection of large-scale data engineering and computationally
intensive quantitative finance. Banks and financial institutions must compute measures such as Value-at-Risk,
Expected Shortfall, counterparty exposure profiles, XVA, stress-test impacts, and regulatory capital under strict time
windows. While compute acceleration (distributed clusters, GPUs, optimized numerical schemes) has progressed
quickly, the hardest bottlenecks increasingly come from data: fragmented sources, inconsistent identifiers, weak
lineage, late-arriving market data, incomplete reference data, and governance constraints that limit what can be used
and when. This paper synthesizes the dominant data challenges that prevent near real-time risk, explains why these
challenges are amplified by high-performance architectures, and compares competing platform patterns (warehouse,
lake, lake house, and hybrid) from a risk-data standpoint. We also propose a practical control-and-architecture
blueprint: “risk data products” with strong lineage and validation, plus tiered storage/compute that separates
regulatory-grade reporting from exploratory analytics. The discussion is grounded in recent research on scalable big-
data risk architectures [1], BCBS-239-oriented validation and lineage practices [2-4], and high-performance XVA
computation methods that stress both compute and data pipelines [5-8].

1. Introduction

Risk analytics has shifted from periodic reporting (daily or end-of-day) toward continuous decision support. Modern
portfolios span multiple asset classes, legal entities, and booking models; the analytics stack must join trade data,
reference/master data, market data, collateral and margin data, counterparty data, and historical observations at scale.
The computational side is heavy, but what frequently breaks the system is the data plane: data arrives late, identifiers
do not match, market conventions differ, and “truth” differs by system.

This is not merely an operational annoyance. Many risk calculations are path dependent (e.g., Monte Carlo exposure,
XVA layers, stress scenarios), so small data defects propagate nonlinearly and create large valuation or exposure
errors. High-performance architectures amplify these issues: parallel execution spreads bad inputs quickly, caching
can freeze incorrect data into downstream results, and distributed transformations make lineage harder unless
explicitly engineered.

Recent literature highlights that scalable risk computation increasingly depends on data modelling standards,
harmonized contract representations, and well-designed big-data pipelines [1]. At the same time, compliance-driven
governance, master data management, and data lineage remain difficult to implement in large banks [3,4]. For
complex counterparty-risk measures such as XVA, GPU-enabled nested Monte Carlo approaches demonstrate that
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compute may be feasible, but they implicitly assume disciplined input data, scenario management, and consistent
market/contract conventions [5].

Table 1. HPRA analytics types and their data stressors

Analytics family

Core computations

Primary data dependencies

Typical data pain point

Market
(VaR/ES)

risk

scenarios, revaluations

positions, market data, curves

late prices, inconsistent curves

Counterparty risk

exposure profiles, netting

trades, CSAs, collateral, legal
entity

wrong netting sets, missing CSA
terms

XVA nested  simulation  /|lexposure, funding curves, credit|linconsistent  curves,  wrong
regressions spreads calendars

Liquidity/stress . cashflows, funding sources, . . .

tesjs y shocks + aggregation limits g mapping and hierarchy mismatch

standardized formulas +

Regulatory metri .
egulatory metrics audit

lineage, controls, reference data ||[Explainability/audit gaps

2. Background and related work

2.1 Big-data architectures for financial risk

Big-data frameworks have been adopted to handle the “risk data explosion” created by scenario simulation and
granular contract modelling. Stockinger et al. show a scalable architecture for large-scale financial analytics using
Apache Spark and discuss an important implementation trade-off: user-defined functions (UDFs) that reuse existing
computation kernels versus rewriting parts into SQL to leverage optimizers [1]. This matters for risk analytics because
many calculations are nonlinear and kernel-based; the “data plumbing” around kernels becomes the dominant scaling
constraint.

2.2 Data governance and BCBS-239-oriented practices

Banks face persistent challenges in risk data aggregation, validation, and reporting. Prorokowski focuses on risk data
validation under BCBS-239, emphasizing lineage proof and auditability across the data lifecycle [2]. Martins et al.
propose a BCBS-239 compliance action plan tied to master data management and governance processes, reflecting
how governance is not optional: it is structural work that must be built into systems [3]. Bernardo et al. provide a
systematic review of data governance and quality management, highlighting maturity models and recurring
organizational/technical challenges [4].

2.3 High-performance counterparty risk and XVA computation

For XVA, nested Monte Carlo remains a canonical approach, but it is computationally expensive. Abbas-Turki et al.
describe GPU optimizations that make error-controlled nested Monte Carlo XVA more feasible [5]. Chau et al. build
a scalable XVA demonstrator using a stochastic grid bundling method with GPU computing [6]. Albanese et al.
connect XVA to a balance-sheet perspective and discuss computation in a whole-bank context [7]. Grzelak proposes
sparse-grid techniques to dramatically reduce portfolio evaluations for exposure calculations, addressing a key
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bottleneck in XVA pipelines [8]. All of these methods share a hidden assumption: data (trades, curves, calendars,
credit inputs, legal terms) must be clean and consistently mapped, or the speedup only accelerates incorrect results.

Table 2. What the literature implies about data challenges

Source Focus Key implication for data

scalable  Spark  risk

Stockinger et al. (2019) [1] analytics

data models + execution plan choices affect feasibility

Prorokowski (2019) [2] BCBS-239 validation lineage and validation must be designed, not “bolted on”

Martins et al. (2022) [3] BCBS-239 + MDM master/reference data is a compliance and accuracy|

foundation
Bernardo et al. (2024) [4] ||governance review governance maturity is a differentiator for reliability
XVA — . . s . .
I exposure papers [5 HPC for risk compute gains are wasted if inputs are inconsistent

8]

3. Data challenges across the HPRA lifecycle

This section organizes challenges by where they occur: ingestion, normalization, enrichment, scenario management,
aggregation, and reporting.

3.1 Heterogeneity and semantic mismatches

Risk engines merge data from front office systems, middle office controls, market data vendors, collateral systems,
and reference data hubs. The same concept may be represented differently: multiple instrument identifiers, different
day-count conventions, different curve construction rules, and inconsistent legal entity hierarchies. In practice,
semantic mismatches show up as: duplicated trades, broken netting sets, or incorrect aggregation by desk or legal
entity.

A common pattern is “schema harmonization without semantic harmonization.” Teams unify column names and
formats but still disagree on meaning. This is why master data management and governance frameworks remain
central [3,4].

3.2 Data quality: completeness, accuracy, consistency, timeliness

Data quality is multidimensional. In risk, the cost of poor quality is asymmetric: one wrong CSA threshold can shift
exposure; one missing reference rate fix can break curve construction. Empirical research on how data quality affects
machine learning shows performance degradation across multiple quality dimensions [9], which is relevant because
ML is increasingly used for approximations (pricing surrogates, scenario compression, anomaly detection) inside risk
pipelines.

3.3 Lineage and auditability gaps

High-performance pipelines frequently prioritize throughput over traceability. Yet risk requires explainability: “where
did this number come from?” Prorokowski emphasizes that proving complete lineage is challenging and requires more
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than point validations; it needs traceable metadata, audit trails, and controlled transformations [2]. Without this,
institutions face model risk, operational risk, and regulatory findings.

3.4 Reference data and entity resolution

Many exposure and capital calculations depend on correct entity resolution: counterparty hierarchies, legal entity
identifiers, product taxonomies, and curve mapping keys. Martins et al. show that master data management and
governance are essential to BCBS-239 compliance and effective risk reporting [3]. In HPRA, entity resolution must
also be fast and scalable, not just correct.

3.5 Scenario and history management (especially under FRTB-style demands)

Some regimes require long histories of “real” price observations and consistent tracking of modellability logic.
Huang’s study on FRTB data pooling highlights the technological requirements and costs of retaining, validating, and
using large observational datasets to support modellability outcomes [10]. These datasets are large, sensitive, and

often governed by strict internal controls, making them difficult to operationalize in low-latency pipelines.

Table 3. Data challenges mapped to root causes and failure signals

Challenge

Root cause

Observable failure signal

Typical downstream impact

Semantic mismatch

inconsistent conventions and
mappings

reconciliation breaks across
reports

wrong limits/capital attribution

Missing/late data

batch feeds, vendor delays

“holes” in curves/scenarios

reruns, SLA breaches

Poor lineage

opaque ETL, manual fixes

cannot explain number

audit findings, model risk

Entity resolution

weak MDM, duplicate IDs

netting errors

exposure inflation/deflation

retention + blow-up, access spikes, missing

limits

History/scenario
sprawl

governance||storage

delays

compute cost
RFET evidence

4. Why high-performance architectures make the data problem harder

High-performance risk stacks introduce specific “data physics.” The same defect is more damaging because it scales
faster.

4.1 Parallelism amplifies bad inputs

Distributed computing frameworks (Spark, Flink, GPU kernels) replicate inputs across executors. A mapping error
can instantly contaminate thousands of partitions and cached intermediate datasets. This creates two requirements:

1. pre-flight validation before parallel compute, and
2. guardrails during execution (schema checks, invariants, anomaly thresholds).

4.2 Data locality, caching, and correctness

Caching is essential for speed but dangerous for correctness if cache invalidation is weak. For example, caching yield
curves can reduce latency, but if curve construction changes intraday, cached curves produce inconsistent valuations
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across runs. Stockinger et al. demonstrate that design decisions (UDF vs SQL rewrite) affect end-to-end runtime and
scalability [1]; similar decisions affect where caching happens and how reproducible results remain.

4.3 Mixed workloads: regulatory-grade vs exploratory analytics
Risk platforms usually support two workloads:

e Regulatory-grade: strict controls, reproducible runs, auditable lineage.
o Exploratory/desk analytics: fast iteration, flexible inputs, “what-if” analysis.

Trying to serve both with the same data pipeline often leads to compromises that break one side. Governance literature
suggests maturity models and differentiated controls to avoid this trap [4].

4.4 Data volume explosion from simulation
Monte Carlo and scenario-based risk multiplies data volumes. Even when storing only aggregated results,
intermediate states can be enormous. In large-scale financial analytics, intermediate results can reach extreme sizes,

motivating careful architecture choices [1].

Table 4. HP architecture choices vs data risks

. . Performance L s
Architecture choice upside Data risk introduced Mitigation pattern
Aggressive caching low latency stale/incorrect snapshots ||versioned datasets, TTL + invalidation
Distributed ETL scale opaque transformations ||metadata-first lineage + run IDs
GPU acceleration huge speedups “fast wrong answers” strict input contracts + validation gates

harder optimization +

UDF-heavy pipelines reuse kernels .
ypip tracing

standardized interfaces + structured logs

Mixed workload on one lower duplication |lcontrol conflicts split “gold” regulatory data products vs
lake sandbox

5. Comparative analysis of platform patterns

This section compares common platform approaches specifically through a risk-data lens (not generic “data platform”
criteria).

5.1 Data warehouse-centric

Warehouses offer strong governance, SQL semantics, and consistency, which helps lineage and audit. But they
struggle with semi-structured data, high-frequency market feeds, and simulation-scale intermediates.
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5.2 Data lake-centric

Lakes handle scale and flexible formats well. But without strong governance, lakes become “data swamps,” and
lineage plus quality become fragile. This is especially problematic for BCBS-239-aligned risk reporting.

5.3 Lakehouse or hybrid
A lake house-like approach aims to combine lake scalability with warehouse-like governance. In practice, many risk

organizations adopt a hybrid: a governed “gold” layer for audited metrics and a scalable lake/compute layer for
scenario generation and heavy simulations. Governance research supports staged maturity and differentiated practices

[4].

5.4 Data pooling / consortium models (for observational history)

For model lability-driven regimes, data pooling can expand usable observations but introduces confidentiality,
standardization, and operational overhead. Huang discusses the trade-offs and implementation constraints in the

FRTB context [10].

Table 5. Comparative analysis of risk-data platform patterns

Pattern Strengths for risk Weaknesses for risk Best-fit use cases

strong controls,|jexpensive at simulation|regulatory  reporting,  reconciled

\Warehouse-centric -
repeatability scale aggregates

scalable storage, flexible|lgovernance/lineage

raw ingestion, exploratory analytics
schema harder g P y n

Lake-centric

Hybrid / lakehouse- complexity, tooling|lend-to-end risk with “gold” data
. balance of scale + control
like sprawl products

modellability evidence, price
observation retention

Specialized  pools

richer history/coverage legal/security constraints
(FRTB) y g g y

6. Control framework and design recommendations
Here is a practical blueprint for mitigating data challenges without killing performance.
6.1 Treat risk datasets as “data products”

Each core dataset (trades, market curves, counterparty hierarchies, collateral terms, scenarios) should be a versioned,
documented product with:

o explicit SLAs (freshness, completeness),
o validation rules (invariants),

e contract tests (schema + semantics),

o lineage metadata and run IDs.

This aligns with BCBS-239-style thinking as operationalized through MDM and governance practices [2,3].
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6.2-Tiered data quality gates
Use three tiers:
1. Bronze (raw): capture everything; minimal rejection; immutable ingestion.
2. Silver (validated/standardized): enforce schema + key constraints; resolve IDs.
3. Gold (regulatory-grade): reconciled, signed-off mappings; audited lineage.
6.3 Lineage-by-construction
Instead of retrofitting lineage, embed it:
e propagate dataset version IDs into every transformation,
e record transformation DAGs (job 1Ds, inputs, outputs),
e store model/risk-run configuration as a first-class artifact.
This addresses the “prove lineage” pain point highlighted in BCBS-239 validation discussions [2].
6.4 Performance-aware validation
Validation must be efficient:
o run lightweight checks before scaling out (sample + critical constraints),
e run distributed checks as part of ETL (partition-level assertions),
e quarantine suspicious partitions rather than failing entire runs.
6.5 Compute/data co-design for XVA and exposure engines
High-performance XVA methods (GPU nested Monte Carlo, sparse grids, bundling methods) reduce compute but
require consistent inputs and scenario governance [5-8]. The co-design principle is: standardize the interface
between data products and pricing/risk kernels (curves, calendars, vol surfaces, CSA terms) and enforce it with

automated contract tests.

Table 6. Recommended controls and their performance impact

Control What it prevents Implementation idea Performance cost
Versioned datasets ||“same run, different inputs” |[immutable snapshots + IDs low to medium
Semantic validation|jwrong conventions/mappings|jrule engine + critical invariants medium

Lineage capture audit failure metadata DAG + run configs low

Entity resolution  |[netting/aggregation errors MDM rules + deterministic matching||[medium

Quarantine strategy |[full-run failures isolate bad partitions low
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7. Discussion and future directions

7.1 Data-centric risk and “trustworthy analytics”
As ML becomes more common in risk workflows, data quality becomes even more central. Empirical evidence shows
measurable performance sensitivity to data quality dimensions [9]. For risk, this implies: ML-based approximations

must have data-quality monitoring and drift detection tied to the same lineage and versioning system used for classic
analytics.

7.2 Metadata frameworks and hybrid simulation—Al workflows

Modern workflows increasingly combine simulation with Al surrogates and require stronger metadata to coordinate
artifacts (datasets, model versions, calibration inputs). Recent work on metadata frameworks for tracking metadata,
lineage, and model information in hybrid workflows reflects this trend [11].

7.3 Regulation-driven datasets and privacy

FRTB-like observational requirements push toward larger retained datasets and potentially shared pools [10]. That
creates tension with privacy, confidentiality, and competition constraints. Technically, this encourages:

e anonymization pipelines with verifiable transformations,
e access control at dataset and column level,

e cryptographic audit trails (where appropriate), while still preserving performance.

Table 7. Emerging themes

Theme Why it’s coming Data implication
ML surrogates in risk faster revaluation needs data-quality monitoring + drift
Hybrid sim—Al workflows|\compute savings richer metadata + artifact tracking

Larger retained histories ||modellability + explainability||storage + governance complexity

Stronger lineage tooling [jaudit pressure lineage-by-default becomes mandatory

8. Conclusion

High-performance risk analytics is increasingly limited by data rather than raw compute. The core challenges are
semantic mismatches, multi-dimensional data quality, lineage gaps, entity resolution, and scenario/history
management at scale. High-performance architectures magnify these risks because parallelism spreads defects
quickly, caching can freeze incorrect states, and mixed workloads create governance conflicts.

The path forward is not “more tools,” but data discipline engineered into the platform: versioned risk data products,
tiered quality gates, lineage-by-construction, performance-aware validation, and compute/data co-design for exposure
and XVA engines. Comparative analysis suggests hybrid patterns (governed “gold” plus scalable simulation layers)
are often the most realistic route for institutions that must satisfy both regulatory and real-time decision demands.
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Table 8. Final checklist for HPRA readiness

Area Minimum bar “Good” looks like

Data quality |[basic schema checks||semantic rules + monitoring

Lineage partial logs end-to-end, queryable DAG
MDM/entity |[manual fixes deterministic resolution + stewardship
Platform scalable compute ||scalable + controlled “gold” layer
XVA/exposure||fast compute fast + reproducible + auditable

References

Abbas-Turki, L. A., Crépey, S., & Diallo, B. (2018). XVA Principles, Nested Monte Carlo Strategies, and GPU
Optimizations. International Journal of Theoretical and Applied
Finance. https://doi.org/10.1142/S0219024918500309

Albanese, C., Crépey, S., Hoskinson, R., & Saadeddine, B. (2021). XVA analysis from the balance
sheet. Quantitative Finance. https://doi.org/10.1080/14697688.2020.1817533

Bernardo, B. M. V., Mamede, H. S., Barroso, J. M. P., & dos Santos, V. M. P. D. (2024). Data governance &
quality management—Innovation and breakthroughs across different fields. Journal of Innovation &
Knowledge. https://doi.org/10.1016/j.jik.2024.100598

Chau, K. W., Tang, J., & Oosterlee, C. W. (2020). An SGBM-XVA demonstrator: a scalable Python tool for
pricing XVA. Journal of Mathematics in Industry. https://doi.org/10.1186/s13362-020-00073-5

Foltin, M., et al. (2025). Framework for tracking metadata, lineage and model information in hybrid simulation—
Al workflows. Proceedings of the ACM. https://doi.org/10.1145/3757348.3757364

Grzelak, L. A. (2022). Sparse grid method for highly efficient computation of exposures for xVA. Applied
Mathematics and Computation. https://doi.org/10.1016/j.amc.2022.127446

Huang, J. Y. (2021). Basel Il FRTB: data pooling innovation to lower capital charges. Financial
Innovation. https://doi.org/10.1186/s40854-021-00252-2

Martins, J., Mamede, H. S., & Correia, J. (2022). Risk compliance and master data management in banking — A
novel BCBS 239 compliance action-plan proposal. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e09627

Mohammed, S., Budach, L., Feuerpfeil, M., et al. (2025). The effects of data quality on machine learning
performance on tabular data. Information Systems. https://doi.org/10.1016/j.is.2025.102549

Prorokowski, L. (2019). Risk data validation under BCBS 239.Journal of Risk Model
Validation. https://doi.org/10.21314/JRMV.2019.207

Stockinger, K., Bundi, N., Heitz, J., et al. (2019). Scalable architecture for Big Data financial analytics: user-
defined functions vs. SQL. Journal of Big Data. https://doi.org/10.1186/s40537-019-0209-0

35

BHARAT PUBLICATION


https://bharatpublication.com/ijtse/
https://doi.org/10.1142/S0219024918500309
https://doi.org/10.1080/14697688.2020.1817533
https://doi.org/10.1016/j.jik.2024.100598
https://doi.org/10.1186/s13362-020-00073-5
https://doi.org/10.1145/3757348.3757364
https://doi.org/10.1016/j.amc.2022.127446
https://doi.org/10.1186/s40854-021-00252-2
https://doi.org/10.1016/j.heliyon.2022.e09627
https://doi.org/10.1016/j.is.2025.102549
https://doi.org/10.21314/JRMV.2019.207
https://doi.org/10.1186/s40537-019-0209-0

	1. Introduction

